

Does Threatening 'Prospective Retrospection' of Anti-Avoidance Measures Work in Deterring Tax Avoidance on Employee Remuneration?

Evaluation of anti-avoidance

using difference-in-difference estimation

Nick Catton & Alice Dwyer

Outline

- The Avoidance Problem
- The Anti-Avoidance Measure
- Evaluation Objective & Approach
- Differences-in-Differences Methodology
- The Data
- The Model
- Results
- Pre-programme test
- Qualitative analysis
- Lessons

The avoidance problem

Bonus should be paid as employment income

But incentive to pay bonuses as dividends:

	Bonus Paid as		
Tax rate for:	Employment Income	Dividend Income	
Income Tax	40%	25%	
Employer NICs	12.8%	0%	
Employee NICs	1%	0%	
Effective tax rate	54%	25%	

The policy response 1

The policy response 2

Evaluation objective & approach

What does success mean in practice?

- Avoidance disclosures? already fallen away
- Revenues did not flow into a specific pot or come with a specific tag
- Only 0.1% of overall employment receipts, cannot be detected in aggregate data
- Change in form of remuneration and effective tax rate on individuals previously involved in avoidance. Detect these changes in individual-level data?

Differences-in-Differences method

	Average before Treatment	Average after Treatment	Difference Within Groups Over time:
Treatment Group	Before _{Treatment}	After _{Treatment}	After _{Treatment} - Before _{Treatment}
Control Group	Before Control	After _{Control}	After _{Control} - Before _{Control}
Difference-in-Differences = difference between Treatment and Control groups over time			(After _{Treatment} - Before _{Treatment}) – (After _{Control} - Before _{Control})

Differences-in-Differences 2

Difference-in-Differences:			4 percentage points
Control: Non- Avoiders	31%	33%	2 percentage points
Treatment Group: Avoiders	39%	45%	6 percentage points
	ETR Before Treatment (April 2004)	ETR After Treatment (April 2005)	Difference Within Groups Over time:

The data: before the announcement

The data: after the announcement

Data: Average effective tax rates

Year	Average (Mean) Effective Tax Rate			
	Non-Avoider	Avoider	Positive-Dividend Avoider	
2001-02	30.6%	39.0%	37.7%	
2002-03	31.1%	40.2%	38.8%	
2003-04	30.4%	42.3%	42.4%	
2004-05	30.8%	43.3%	44.4%	
2005-06	28.9%	44.0%	44.4%	

Model | Basic D-i-D

Simple ordinary least squares regression

age, age squared,

gender, enquiries

Post treatment year & treatment dummy interaction term

$$Y_{it} = \alpha + \beta D_i + \gamma_1 after_t + \delta D_i^* after_t$$

 α = constant

 β = treatment group specific effect (to account for average permanent differences between treatment and control)

 γ_1 = time trend common to control and treatment groups

 δ = true effect of treatment

Model II Subgroup Specific effects

Estimate sub-group effects for avoiders with positive dividend income

$$Y_{it} = \alpha + \beta_1 D_i^1 + \gamma_1 after + \delta_1 D_i^1 * after$$

$$+ \beta_2 D_i^1 D_i^2 + \gamma_2 after * D_i^2 + \delta_2 D_i^1 D_i^2 * after$$

$$+ \gamma_3 X + \varepsilon_i$$
Interact treatment dummy for positive

Interact treatment dummy for positive dividends subgroup (D²) with:

- -treatment dummy for avoider subgroup (D²)
- -the after indicator
- -the interaction term to pick up the subgroup specific treatment effect
- Sub-group treatment effect is: $[\delta_1 + \delta_2]$

Summary of regression results

	2004-05		2005-06	
Estimated percentage point (ppt) increase in:	Avoider $[\delta_1]$	Positive Dividends Avoiders $[\delta_1 + \delta_2]$	Avoider $[\delta_1]$	Positive Dividends Avoiders $[\delta_1 + \delta_2]$
Effective tax rate	0	5.6	2.8	5.5
% dividend income	3.4	-11.4	3.5	-12.4
% employment income	-4.2	14.3	0	15.1

Pre-programme Test

Pre-programme Test

- Failed pre-programme test for 2003-04: positive dividend avoiders increased ETR by 4.9 percentage points
- Model using 'Random Growth Model'

Qualitative analysis

- 50 complex taxpayers, 7 known employer avoiders:
- 34 had some change in avoidance:
 - > 3 started to avoid
 - ➤ 15 changed avoidance scheme
 - ➤ 16 stopped avoiding
- Ending some employer- & individual-based avoidance
 - Yield may be greater than found in quant analysis
- Switching from employer- to individual-based avoidance
 - > Switch in risk, lose economies of scale
- Some on-going individual based avoidance
 - > Areas for future action

Lessons learned

Policy

- Policy worked 5ppt increase in effective tax rates
- 2. Raised most of forecast yield
- 3. Understanding elements not working well, to inform future policy
- 4. Success of threat of retrospection?

Analysis

- 5. Data cleansing and matching for future use
- 6. Developed our in-house econometric skills
- Combining data, institutional knowledge & analysis to refine as we went along
- 8. New model for technical support from consultants

